На сегодняшний день нет области знаний, где бы число е не использовалось

Наука и жизньНаука

Число круче, чем π

Кандидат физико-математических наук Алексей Понятов

Швейцарский математик Якоб Бернулли (1655—1705), первооткрыватель числа е, один из основоположников теории вероятностей и математического анализа. Иллюстрация: Wikimedia Commons/PD

Вопрос о том, кто открыл число е, до сих пор вызывает споры. Долгое время математики, фактически пользуясь этим числом, никак не могли его распознать. Однако потрясающая особенность е появляться в самых неожиданных контекстах и помогать с описанием самых разных природных, технических, экономических и демографических процессов привела к тому, что на сегодняшний день нет, пожалуй, области знаний, где бы оно не использовалось, а некоторые науки обязаны ему значительными успехами.

Прячущееся в логарифмах

Число е пришло в математику достаточно поздно, поскольку не имело геометрического происхождения в отличие от π, √2 или золотого сечения, известных ещё с древности. Неявно оно появилось практически одновременно с изобретением логарифмов в 1614 году, как основание одного из видов логарифмов, который лишь через полвека получил название натурального. Правда, у «отца» логарифмов шотландского математика Джона Непера логарифм был не совсем натуральный (его основание близко к 1/е), но уже в 1618 году в приложении к переводу его труда на английский язык появилась табличка из нескольких натуральных логарифмов, сделанная, вероятно, английским математиком и изобретателем логарифмической линейки Уильямом Отредом. А на следующий год другой англичанин, математик и преподаватель Джон Спейделл издал таблицы натуральных логарифмов чисел от 1 до 1000 и синусов под названием «Новые логарифмы…». В 1624 году создатель первых таблиц десятич-ных логарифмов профессор математики в Оксфорде Генри Бригс вычислил коэффициент, позволяющий связать десятичные логарифмы с натуральными. Фактически это был десятичный логарифм е.

Однако само число е тогда введено не было. Дело в том, что алгоритмы вычисления логарифмов того времени (см. статью «Его величество логарифм», «Наука и жизнь» № 5, 2020 г.) не предусматривали понятия их основания. То, что вычисляемые в те годы логарифмы были по основаниям десять (десятичные) или е (натуральные), стало понятно значительно позже. Более того, даже связь логарифмов с показателями степеней (y = logex; x = ey), с которой начинается их изучение в современной школе, была обнаружена значительно позже. Точно известно, что эту связь в 1684 году уже знал шотландский математик Джеймс Грегори, которого Исаак Ньютон называл в числе своих учителей и вдохновителей. Так что, когда в наше время е называют неперовым числом — это не вполне корректно. Непер не знал этого числа и даже не изобрёл собственно натуральный логарифм.

Любопытно, что термин «экспонента», сейчас прочно связанный с е, появился ещё раньше. Первым, кто использовал слово exponent в значении «показатель степени», был немецкий математик Михаэль Штифель — это понятие встречается в его книге «Arithmetica integra», вышедшей в 1544 году. Именно Штифель, по сути, предложил алгоритм вычисления логарифмов на основе сопоставления арифметической и геометрической прогрессий, использованный Непером. Но поскольку сам Штифель никаких вычислений не сделал, то слава первооткрывателя досталась шотландцу.

Слово «экспонента» происходит от латинского exponentis — «показывающий». Термин экспоненциальная, или показательная функция (кривая) для зависимости y = ax ввёл Лейбниц в 1679 году. В настоящее время функцию y = ax принято называть показательной, а название экспоненциальная функция (экспонента) закреплено за y = ex.

Логарифмы в отсутствии вычислительных машин играли огромную роль в вычислениях, облегчая и упрощая их. Неудивительно, что они были объектом пристального внимания многих учёных, в том числе фигур первой величины — Иоганна Кеплера, Исаака Ньютона, Готфрида Лейбница и Христиана Гюйгенса.

В 1649 году бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь фигуры, ограниченной осью х и гиперболой y = 1/x, изменяется от х по логарифмическому закону. С его лёгкой руки такие логарифмы стали называть гиперболическими. Однако никто тогда не догадался посмотреть, при каком x площадь такой фигуры равна 1 (а это будет как раз при x = e), так что e и в этот раз найдено не было.

Бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь S(x) фигуры, ограниченной осью х и гиперболой , равна натуральному логарифму от значения х. Приведена современная запись этого утверждения в виде интеграла.

В 1668 году благодаря фундаментальному труду «Logarithmotechnia» немецкого математика Николаса Меркатора в научный язык входит термин «натуральный логарифм», но неуловимое число е по-прежнему остаётся в тени. (Кстати, современное обозначение «ln» по первым буквам слов «логарифм» и «натуральный» появилось лишь через 200 лет, в 1893 году его ввёл американский математик Ирвинг Стрингхем.)

Число е как предел

Первым число е неожиданно вычислил швейцарский математик Якоб Бернулли, решая задачу, никак не связанную с логарифмами. В 1690 году он опубликовал исследование так называемого сложного процента — дохода, составляющего определённый процент (р — процентная ставка, доля) от предоставляемой суммы денежных средств. При каждом очередном его вычислении учитывается исходная сумма вместе с начисленными ранее процентами. Таким образом, исходная сумма S0 после n начислений превращается в

S = (1 + p)n · S0.

Например, при годовой процентной ставке 100% (р = 1) исходная сумма по истечении года (n = 1) удваивается, и каждый рубль превращается в два. Но что будет с полученным доходом, если начислять процент чаще, но во столько же раз уменьшать процентную ставку? Например, если каждые полгода начислять по 50% (р = 0,5), то в конце года у вас вместо 1 рубля будет:

S = (1 + ½)2 · 1 руб. = 2,25 руб.

А если начислять каждый месяц, то

S = (1 + 1/12)12 · 1 руб. = 2,261303… руб.

Бернулли показал, что если частоту начисления процентов увеличивать бесконечно, то величина (1 + 1/n)n имеет предел, лежащий между 2,5 и 3. Это была первая грубая оценка числа е. Бернулли не представлял всей значимости полученного им результата, а потому не стал проводить длительные трудоёмкие вычисления, определяя это значение более точно. Он даже не дал ему никакого обозначения. А ведь именно этот предел теперь служит в математике определением числа е. В со-временных обозначениях:

Именно такую сумму даст 1 рубль за год, если начислять процент непрерывно.

Имя Якоба Бернулли также связано с натуральным логарифмом и числом e через изученные им свойства различных кривых. Правда, их связи с найденным пределом он не увидел, возможно, просто не успел, поскольку скончался в возрасте 50 лет. Любимым объектом изучения Бернулли стала так называемая логарифмическая спираль, современная формула которой записывается как ln r = kθ или r = ae, где a, b и k — константы. Именно Бернулли первым начал широко использовать при построении кривых полярные координаты (в них положение точки на плоскости описывается двумя числами: радиусом r и углом θ).

В отличие от спирали Архимеда, где витки идут через одинаковое расстояние, витки логарифмической спирали расходятся (расстояние между ними увеличивается). Она часто встречается в природе, её можно обнаружить в строении живых организмов, ураганов и даже галактик. Нашла логарифмическая спираль своё место и в искусстве как способ построения орнаментов и композиций. Так, великий художник эпохи Возрождения Альбрехт Дюрер посвятил ей труд, где показывал, как строить и применять спираль для вычерчивания волют (завитков) капителей, побегов с листвой или украшений епископского жезла.

Рукава галактики M 51 в созвездии Гончие Псы представляют собой логарифмическую спираль. Иллюстрация: NASA/ESA/S. Beckwith (STScI)/Hubble Heritage Team (STScI/AURA)
Разрез раковины головоногого моллюска наутилуса, показывающий камеры, расположенные приблизительно по логарифмической спирали (пунктирная синяя кривая). Иллюстрация: Dicklyon/Wikimedia Commons/CC BY-SA 4.0
Арка в форме цепной линии в шахском дворце Сасанидов Таки-Кисра (не позднее III века до н. э.) в одном из крупнейших городов античности Ктесифоне (в 32 км от современного Багдада, Ирак). Фото: Library of Congress’s Prints and Photographs/PD

Сейчас даже трудно представить, с какими сложностями сталкивались исследователи того времени, не имея в своём распоряжении современных форм математической записи и средств математического анализа. Задачи, которые в наше время за считаные минуты решит студент-первокурсник, требовали от них месяцев напряжённой работы и совершения открытий.

Логарифмическая спираль настолько восхитила Бернулли своими свойствами, что он называл её «spira mirabilis» — «удивительная спираль» и даже завещал выбить её на своём надгробии вместе с надписью «EADEM MUTATA RESURGO» («изменённая, я возрождаюсь такой же»), которая описывает свойство этой кривой сохранять свою форму после некоторых преобразований. Правда, тут история немного пошутила над математиком, необразованный мастер изобразил на надгробии спираль Архимеда…

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Два герцога: Ришельё против Бэкингема Два герцога: Ришельё против Бэкингема

Противостояние Англии и Франции в XVII веке — это ещё и противостояние министров

Дилетант
Правила жизни Дэвида Линча Правила жизни Дэвида Линча

Дэвид Линч: я узнал все в своей жизни потому, что решил попробовать что-то новое

Esquire
Успеть за 15 секунд Успеть за 15 секунд

Людям надоело притворяться – в TikTok они остаются собой

Популярная механика
Под ударом: кому угрожает субсидиарная ответственность Под ударом: кому угрожает субсидиарная ответственность

Если вы влияете на бизнес компании, вы находитесь в зоне риска

Forbes
Геометрия в стиле да Винчи Геометрия в стиле да Винчи

Преобразование фигур стало главной темой математических исследований да Винчи

Наука и жизнь
Работа по два часа в день без постоянных собраний: основатель Gumroad рассказал, как устроены процессы без штата и офиса Работа по два часа в день без постоянных собраний: основатель Gumroad рассказал, как устроены процессы без штата и офиса

Сахил Лавиния: как растить стабильный бизнес и избегать выгорания

VC.RU
Электроны и котики Электроны и котики

Электроны и котики

Наука и жизнь
Думаете завести питомца? Задайте себе эти 8 вопросов Думаете завести питомца? Задайте себе эти 8 вопросов

Как понять, готовый ли вы завести четвероногого друга?

Psychologies
Великое нашествие Великое нашествие

Вторжение монголов обратило русских государей в деспотов ордынского типа

Дилетант
Самые противные вредные привычки: этот список поможет понять, с чем тебе пора попрощаться Самые противные вредные привычки: этот список поможет понять, с чем тебе пора попрощаться

Список самых опасных вредных привычек, которые пагубно влияют на здоровье

Playboy
«Мне не в чем оправдываться» «Мне не в чем оправдываться»

26 декабря 2020 года в возрасте 98 лет ушёл из жизни Джордж Блейк

Дилетант
5 вредных привычек, которые скорее всего у тебя есть, а ты их не замечаешь 5 вредных привычек, которые скорее всего у тебя есть, а ты их не замечаешь

Некоторые из этих вредных привычек еще и притворяются полезными!

Maxim
Конец эпохи Аресибо Конец эпохи Аресибо

Cамый известный в мире радиотелескоп разрушился

Наука и жизнь
С мужского плеча: какую одежду можно и нужно покупать в мужском отделе С мужского плеча: какую одежду можно и нужно покупать в мужском отделе

6 вещей, которые ты найдешь в мужском отделе магазина

Cosmopolitan
Триумф 57 мм Триумф 57 мм

Новое слово в разработке российских бронемашин

Популярная механика
Алкогений: Генри Миллер Алкогений: Генри Миллер

«Для выживания мне нужны собеседники, книги, театры, музыка и спиртное».

Maxim
Остров Остров

Прошлое острова Диксон – это освоение Северного морского пути и наука

Вокруг света
Как победить фобию Как победить фобию

Чего бы ты ни боялся, мы попробуем тебе помочь!

Maxim
Шедевр русской кухни Шедевр русской кухни

Ржаной хлеб прочно вошёл в домашний обиход наших соотечественников

Наука и жизнь
Mazda CX-9. А он у тебя большой! Mazda CX-9. А он у тебя большой!

Mazda CX-9 — самый большой кроссовер модельного ряда Mazda

4x4 Club
Опрично-земские порядки в российской истории Опрично-земские порядки в российской истории

В чем причины и содержание очередного поражения русской демократии

Дилетант
Физики предложили искать гравитационные волны с помощью радиотелескопов Физики предложили искать гравитационные волны с помощью радиотелескопов

Радиотелескопы могут стать инструментом для обнаружения гравитационных волн

N+1
Пять научно обоснованных причин, почему стоит бояться зомби-апокалипсиса Пять научно обоснованных причин, почему стоит бояться зомби-апокалипсиса

Рассказываем, почему ты не зря опасаешься наступления зомби-апокалипсиса

Maxim
Ученые показали нуклеазную функцию необходимого вирусу Эпштейна — Барр белка Ученые показали нуклеазную функцию необходимого вирусу Эпштейна — Барр белка

Раскрыт механизм, поддерживающий присутствие вируса Эпштейна — Барр в клетках

N+1
Взрослые самки острохвостых амадин сохранили любовь к отцовским песням Взрослые самки острохвостых амадин сохранили любовь к отцовским песням

Самки острохвостых амадин с детства запоминают песню отца

N+1
10 самых неувядающих рок-звезд! Эти патриархи выглядят моложе тебя! 10 самых неувядающих рок-звезд! Эти патриархи выглядят моложе тебя!

Вечно молодые, но не вечно трезвые

Maxim
Откажитесь от строгого расписания тренировок. Оно мешает и демотивирует, выяснили ученые Откажитесь от строгого расписания тренировок. Оно мешает и демотивирует, выяснили ученые

Дисциплина и стремление установить график тренировок часто не работают

Inc.
Постоять за себя Постоять за себя

Учим детей правильно реагировать на агрессоров и выходить из сложных ситуаций

Лиза
Избыток водорода на белом карлике объяснили поглощением богатой водой планетезимали Избыток водорода на белом карлике объяснили поглощением богатой водой планетезимали

Как объяснить большое содержание водорода в атмосфере белого карлика GD 424?

N+1
«Революционный гламур»: как глянец стал центром российской журналистики 2000-х «Революционный гламур»: как глянец стал центром российской журналистики 2000-х

Как молодой российский глянец привлек аудиторию репортажами из горячих точек

Esquire
Открыть в приложении