На сегодняшний день нет области знаний, где бы число е не использовалось

Наука и жизньНаука

Число круче, чем π

Кандидат физико-математических наук Алексей Понятов

Швейцарский математик Якоб Бернулли (1655—1705), первооткрыватель числа е, один из основоположников теории вероятностей и математического анализа. Иллюстрация: Wikimedia Commons/PD

Вопрос о том, кто открыл число е, до сих пор вызывает споры. Долгое время математики, фактически пользуясь этим числом, никак не могли его распознать. Однако потрясающая особенность е появляться в самых неожиданных контекстах и помогать с описанием самых разных природных, технических, экономических и демографических процессов привела к тому, что на сегодняшний день нет, пожалуй, области знаний, где бы оно не использовалось, а некоторые науки обязаны ему значительными успехами.

Прячущееся в логарифмах

Число е пришло в математику достаточно поздно, поскольку не имело геометрического происхождения в отличие от π, √2 или золотого сечения, известных ещё с древности. Неявно оно появилось практически одновременно с изобретением логарифмов в 1614 году, как основание одного из видов логарифмов, который лишь через полвека получил название натурального. Правда, у «отца» логарифмов шотландского математика Джона Непера логарифм был не совсем натуральный (его основание близко к 1/е), но уже в 1618 году в приложении к переводу его труда на английский язык появилась табличка из нескольких натуральных логарифмов, сделанная, вероятно, английским математиком и изобретателем логарифмической линейки Уильямом Отредом. А на следующий год другой англичанин, математик и преподаватель Джон Спейделл издал таблицы натуральных логарифмов чисел от 1 до 1000 и синусов под названием «Новые логарифмы…». В 1624 году создатель первых таблиц десятич-ных логарифмов профессор математики в Оксфорде Генри Бригс вычислил коэффициент, позволяющий связать десятичные логарифмы с натуральными. Фактически это был десятичный логарифм е.

Однако само число е тогда введено не было. Дело в том, что алгоритмы вычисления логарифмов того времени (см. статью «Его величество логарифм», «Наука и жизнь» № 5, 2020 г.) не предусматривали понятия их основания. То, что вычисляемые в те годы логарифмы были по основаниям десять (десятичные) или е (натуральные), стало понятно значительно позже. Более того, даже связь логарифмов с показателями степеней (y = logex; x = ey), с которой начинается их изучение в современной школе, была обнаружена значительно позже. Точно известно, что эту связь в 1684 году уже знал шотландский математик Джеймс Грегори, которого Исаак Ньютон называл в числе своих учителей и вдохновителей. Так что, когда в наше время е называют неперовым числом — это не вполне корректно. Непер не знал этого числа и даже не изобрёл собственно натуральный логарифм.

Любопытно, что термин «экспонента», сейчас прочно связанный с е, появился ещё раньше. Первым, кто использовал слово exponent в значении «показатель степени», был немецкий математик Михаэль Штифель — это понятие встречается в его книге «Arithmetica integra», вышедшей в 1544 году. Именно Штифель, по сути, предложил алгоритм вычисления логарифмов на основе сопоставления арифметической и геометрической прогрессий, использованный Непером. Но поскольку сам Штифель никаких вычислений не сделал, то слава первооткрывателя досталась шотландцу.

Слово «экспонента» происходит от латинского exponentis — «показывающий». Термин экспоненциальная, или показательная функция (кривая) для зависимости y = ax ввёл Лейбниц в 1679 году. В настоящее время функцию y = ax принято называть показательной, а название экспоненциальная функция (экспонента) закреплено за y = ex.

Логарифмы в отсутствии вычислительных машин играли огромную роль в вычислениях, облегчая и упрощая их. Неудивительно, что они были объектом пристального внимания многих учёных, в том числе фигур первой величины — Иоганна Кеплера, Исаака Ньютона, Готфрида Лейбница и Христиана Гюйгенса.

В 1649 году бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь фигуры, ограниченной осью х и гиперболой y = 1/x, изменяется от х по логарифмическому закону. С его лёгкой руки такие логарифмы стали называть гиперболическими. Однако никто тогда не догадался посмотреть, при каком x площадь такой фигуры равна 1 (а это будет как раз при x = e), так что e и в этот раз найдено не было.

Бельгийский математик Грегуар де Сен-Венсан выяснил, что площадь S(x) фигуры, ограниченной осью х и гиперболой , равна натуральному логарифму от значения х. Приведена современная запись этого утверждения в виде интеграла.

В 1668 году благодаря фундаментальному труду «Logarithmotechnia» немецкого математика Николаса Меркатора в научный язык входит термин «натуральный логарифм», но неуловимое число е по-прежнему остаётся в тени. (Кстати, современное обозначение «ln» по первым буквам слов «логарифм» и «натуральный» появилось лишь через 200 лет, в 1893 году его ввёл американский математик Ирвинг Стрингхем.)

Число е как предел

Первым число е неожиданно вычислил швейцарский математик Якоб Бернулли, решая задачу, никак не связанную с логарифмами. В 1690 году он опубликовал исследование так называемого сложного процента — дохода, составляющего определённый процент (р — процентная ставка, доля) от предоставляемой суммы денежных средств. При каждом очередном его вычислении учитывается исходная сумма вместе с начисленными ранее процентами. Таким образом, исходная сумма S0 после n начислений превращается в

S = (1 + p)n · S0.

Например, при годовой процентной ставке 100% (р = 1) исходная сумма по истечении года (n = 1) удваивается, и каждый рубль превращается в два. Но что будет с полученным доходом, если начислять процент чаще, но во столько же раз уменьшать процентную ставку? Например, если каждые полгода начислять по 50% (р = 0,5), то в конце года у вас вместо 1 рубля будет:

S = (1 + ½)2 · 1 руб. = 2,25 руб.

А если начислять каждый месяц, то

S = (1 + 1/12)12 · 1 руб. = 2,261303… руб.

Бернулли показал, что если частоту начисления процентов увеличивать бесконечно, то величина (1 + 1/n)n имеет предел, лежащий между 2,5 и 3. Это была первая грубая оценка числа е. Бернулли не представлял всей значимости полученного им результата, а потому не стал проводить длительные трудоёмкие вычисления, определяя это значение более точно. Он даже не дал ему никакого обозначения. А ведь именно этот предел теперь служит в математике определением числа е. В со-временных обозначениях:

Именно такую сумму даст 1 рубль за год, если начислять процент непрерывно.

Имя Якоба Бернулли также связано с натуральным логарифмом и числом e через изученные им свойства различных кривых. Правда, их связи с найденным пределом он не увидел, возможно, просто не успел, поскольку скончался в возрасте 50 лет. Любимым объектом изучения Бернулли стала так называемая логарифмическая спираль, современная формула которой записывается как ln r = kθ или r = ae, где a, b и k — константы. Именно Бернулли первым начал широко использовать при построении кривых полярные координаты (в них положение точки на плоскости описывается двумя числами: радиусом r и углом θ).

В отличие от спирали Архимеда, где витки идут через одинаковое расстояние, витки логарифмической спирали расходятся (расстояние между ними увеличивается). Она часто встречается в природе, её можно обнаружить в строении живых организмов, ураганов и даже галактик. Нашла логарифмическая спираль своё место и в искусстве как способ построения орнаментов и композиций. Так, великий художник эпохи Возрождения Альбрехт Дюрер посвятил ей труд, где показывал, как строить и применять спираль для вычерчивания волют (завитков) капителей, побегов с листвой или украшений епископского жезла.

Рукава галактики M 51 в созвездии Гончие Псы представляют собой логарифмическую спираль. Иллюстрация: NASA/ESA/S. Beckwith (STScI)/Hubble Heritage Team (STScI/AURA)
Разрез раковины головоногого моллюска наутилуса, показывающий камеры, расположенные приблизительно по логарифмической спирали (пунктирная синяя кривая). Иллюстрация: Dicklyon/Wikimedia Commons/CC BY-SA 4.0
Арка в форме цепной линии в шахском дворце Сасанидов Таки-Кисра (не позднее III века до н. э.) в одном из крупнейших городов античности Ктесифоне (в 32 км от современного Багдада, Ирак). Фото: Library of Congress’s Prints and Photographs/PD

Сейчас даже трудно представить, с какими сложностями сталкивались исследователи того времени, не имея в своём распоряжении современных форм математической записи и средств математического анализа. Задачи, которые в наше время за считаные минуты решит студент-первокурсник, требовали от них месяцев напряжённой работы и совершения открытий.

Логарифмическая спираль настолько восхитила Бернулли своими свойствами, что он называл её «spira mirabilis» — «удивительная спираль» и даже завещал выбить её на своём надгробии вместе с надписью «EADEM MUTATA RESURGO» («изменённая, я возрождаюсь такой же»), которая описывает свойство этой кривой сохранять свою форму после некоторых преобразований. Правда, тут история немного пошутила над математиком, необразованный мастер изобразил на надгробии спираль Архимеда…

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Человек, который придумывает будущее Человек, который придумывает будущее

Компания с российскими корнями разрабатывает уникальные технологии для авто

Популярная механика
Мирная речь военного времени: к кому обращался Владимир Путин в Давосе Мирная речь военного времени: к кому обращался Владимир Путин в Давосе

В новой холодной войне у России явный дефицит союзников

Forbes
Дачное время Дачное время

Можно ли охватить несколькими предложениями дачный мир?

Наука и жизнь
«Феминизм — удел некрасивых»: почему Оксана Акиньшина не права «Феминизм — удел некрасивых»: почему Оксана Акиньшина не права

Неправильный взгляд на феминизм на примере Оксаны Акиньшиной

Cosmopolitan
Подлинная история д’Артаньяна Подлинная история д’Артаньяна

Жизнь д’Артаньяна точно нельзя назвать скучной

Дилетант
Биотопливо из сахарного тростника обвинили в выбросах закиси азота Биотопливо из сахарного тростника обвинили в выбросах закиси азота

Сахарный тростник может негативно влиять на экологию — исследование

N+1
«У нас нет хлеба, мы умираем» «У нас нет хлеба, мы умираем»

Массовый голод с человеческими жертвами в СССР случался неоднократно

Дилетант
Зорикто Доржиев: воины и принцессы Зорикто Доржиев: воины и принцессы

Искусство Зорикто Доржиева — мир, населенный воинами и принцессами

Караван историй
Секретарь Республики Секретарь Республики

Нормальная жизнь Никколо ди Бернардо деи Макиавелли оборвалась 16 декабря 1512 г

Наука и жизнь
Физики предложили искать гравитационные волны с помощью радиотелескопов Физики предложили искать гравитационные волны с помощью радиотелескопов

Радиотелескопы могут стать инструментом для обнаружения гравитационных волн

N+1
Великое нашествие Великое нашествие

Вторжение монголов обратило русских государей в деспотов ордынского типа

Дилетант
Бодипозитив - это не про красоту. И даже не про любовь к телу. Это про счастье Бодипозитив - это не про красоту. И даже не про любовь к телу. Это про счастье

Что такое на самом деле модный сегодня бодипозитив?

Cosmopolitan
Кошачьи сходства, собачьи различия Кошачьи сходства, собачьи различия

Почему собачьих пород намного больше, чем кошачьих?

Наука и жизнь
Зимняя сказка Зимняя сказка

Белоснежный интерьер, в котором белое всё — новая работа Веры Герасимовой

SALON-Interior
Тайна гибели академика Легасова Тайна гибели академика Легасова

В апреле 1988 года был обнаружен повесившимся Валерий Легасов

Дилетант
Как устранить последствия драки Как устранить последствия драки

Советы по первой помощи после драки от медсестры с десятилетним стажем

Maxim
Живые клетки — химики Живые клетки — химики

Природные аналоги широко известных искусственных соединений

Наука и жизнь
7 типичных ошибок людей, занимающихся спортом дома, по мнению профессиональных тренеров 7 типичных ошибок людей, занимающихся спортом дома, по мнению профессиональных тренеров

Проверь, может есть повод пропустить тренировку?

Maxim
Кулебяка — украшение русского стола Кулебяка — украшение русского стола

Старинная русская кулебяка — традиционное новогоднее угощение

Наука и жизнь
Отношения на расстоянии: как понять, стоит ли их продолжать Отношения на расстоянии: как понять, стоит ли их продолжать

Советы и чек-листы от психолога для тех, кто состоит в отношениях на расстоянии

РБК
В сердце Сицилии В сердце Сицилии

Канноли — лучший воскресный итальянский десерт

Вокруг света
Катись колбаской Катись колбаской

Учимся выбирать сервелат для праздничного стола

Лиза
Прототанки-2 Прототанки-2

А вот и продолжение галереи нерожденных монстров танкостроения!

Maxim
Как изменился макияж за 100 лет — главные тренды от 1910-х до наших дней Как изменился макияж за 100 лет — главные тренды от 1910-х до наших дней

Как менялась мода и какими были главные бьюти-тренды на протяжении века

Cosmopolitan
Дочирикался: как высказывания Трампа в Twitter влияли на рынки, компании и состояния Дочирикался: как высказывания Трампа в Twitter влияли на рынки, компании и состояния

Самые известные и неоднозначные твиты Трампа и то, как они влияли на рынки

Forbes
Возвращение ананасов-убийц! 20 продуктов, которые могут незаметно травить тебя Возвращение ананасов-убийц! 20 продуктов, которые могут незаметно травить тебя

Отдельные виды продовольствия для многих людей являются ядовитыми

Maxim
«После развода никого не ищу и чувствую себя счастливой» «После развода никого не ищу и чувствую себя счастливой»

История женщины, которая чувствует себя счастливой без романтических отношений

Psychologies
Павел Деревянко: «У меня снова перемены в личной жизни» Павел Деревянко: «У меня снова перемены в личной жизни»

Павел Деревянко о любимых сказках, суперсчастливом детстве и походе к психологу

Cosmopolitan
Ум в большом городе Ум в большом городе

О Фран Лебовиц в мини-сериале Мартина Скорсезе

Weekend
Зима будет долгой, но все обойдется Зима будет долгой, но все обойдется

Климат в нашей стране словно рассчитан на уничтожение неприятеля

Psychologies
Открыть в приложении