В космосе обнаружена очередная сложная органическая молекула

Знание – силаНаука

Органический синтез в молекулярных облаках

Дмитрий Вибе

Понятие органической химии и органических соединений возникло в начале XIX века и было призвано выделить химические процессы и вещества, задействованные в функционировании живых организмов. Уже в 1820‑е годы стало ясно, что никакой принципиальной разницы между органической и неорганической химией нет и органические соединения вовсе не обязательно имеют биологическое происхождение. Однако понятие органики и по сей день наделено неким смутным обещанием жизни и привлекает к себе связанное с этим особое внимание.

Новости о том, что в космосе обнаружена очередная сложная органическая молекула, кажутся следующим шагом на пути к обнаружению внеземной жизни, однако нужно понимать, что сложность здесь далеко не та, что встречается в биологии. В астрохимии сложными называют органические молекулы, содержащие шесть или более атомов.

Первой космической органической молекулой стал формальдегид (H2CO), обнаруженный в 1969 году. Буквально на следующий год была обнаружена первая сложная органическая молекула – метанол (CH3OH). Сейчас количество известных межзвездных и околозвездных молекул стремительно близится к трем сотням, и значительная их часть относится к органическим и сложным органическим соединениям. Среди известных межзвездных органических молекул самыми большими являются молекулы цианонафталина (C10H7CN), состоящие из 19 атомов – два бензольных кольца, у которых один атом водорода замещен группой CN.

Понятно, что расширение списка за счет еще более крупных молекул будет более медленным, чем раньше. Это связано с проблемами их детектирования. Молекулы, как и атомы, обнаруживаются по наблюдениям соответствующих спектральных линий (как в излучении, так и в поглощении). Молекулярные линии наблюдаются в широчайшем спектральном диапазоне, начиная от ультрафиолета и заканчивая сантиметровыми волнами. Однако массивные, то есть многоатомные молекулы, детектируются практически исключительно в сантиметровом и миллиметровом диапазонах. В качестве инструмента для поиска новых молекул убедительно лидирует 30‑метровый телескоп миллиметрового диапазона IRAM, установленный в Испании. В последнее время с ним начинает конкурировать недавно обновленный 40‑метровый телескоп Yebes, также расположенный в Испании. Важный вклад вносит 100‑метровый телескоп обсерватории Грин-Бэнк в США.

Телескоп IRAM
Телескоп обсерватории Грин-Бэнк

Несмотря на совершенствование наблюдательной техники, мы по-прежнему открываем в основном простые двух-трехатомные соединения. Темп открытия более крупных молекул существенно ниже. Наряду с цианонафталином обнаруживаются и другие циклические и ветвящиеся молекулы. Неоднократно сообщалось об открытии в молекулярных облаках простейшей аминокислоты – глицина, однако всякий раз за этими сообщениями следовали опровержения. В 2023 году появилась публикация об обнаружении спектральных признаков существенно более сложной аминокислоты – триптофана, но и она затем была оспорена.

Проблема в том, что чем сложнее молекула, тем сложнее ее идентифицировать. Вообще для выявления молекул в межзвездной среде используется тот же метод спектрального анализа, что и для звезд. Но в звездах главным образом наблюдаются линии, связанные с электронными переходами, то есть с изменением энергии движения электронов вокруг атомных ядер. Они попадают в основном в ультрафиолетовый и видимый диапазоны. А в молекулах возможны не только движения электронов, но и движения атомов друг относительно друга. Молекулы могут, например, колебаться и вращаться. Каждое из этих движений тоже квантовано: энергии, связанные с колебаниями и вращениями (или с более сложными движениями), могут принимать строго определенный набор значений, индивидуальный для каждой молекулы. Переходя из одного энергетического состояния в другое, молекула поглощает или излучает фотон с определенной энергией, порождая спектральную линию. Энергетика этих переходов не так значительна, как в случае электронных переходов, поэтому линии, связанные с колебательными переходами, попадают, как правило, в ближний инфракрасный диапазон, а линии, связанные с вращательными переходами, в субмиллиметровый и радиодиапазон.

Чем сложнее молекула, тем более многочисленные движения в ней могут происходить и, соответственно, тем больше она порождает линий. Но, поскольку общая энергия, доступная для «раскачки» структуры, одна и та же и для маленьких, и для больших молекул, у последних линии оказываются гораздо более слабыми, что затрудняет их детектирование. Чтобы увидеть эти линии, нужно накопить больше фотонов – задача, требующая большого телескопа и (или) длительных наблюдений. Есть и другие проблемы. Спектр одной сложной молекулы похож на расческу с тесно посаженными зубьями разной длины. Но в молекулярном облаке помимо этой молекулы есть и другие, поэтому в реальном спектре мы наблюдаем наложение друг на друга разных «расчесок», и нам нужно не только зафиксировать линии одной молекулы, но и отделить их от таких же многочисленных и слабых линий других молекул. Добавим в эту картину еще и изотопологи, то есть молекулы, в которых один или несколько атомов основного изотопа химического элемента замещены атомами его неосновного изотопа. Например, обычный водород (протий) может быть замещен дейтерием, углерод‑12 – углеродом‑13 и т. п. Спектры изотопологов несколько отличаются от спектров «основных» молекул и вносят в наблюдаемую картину свою долю путаницы.

Списки линий известны для ограниченного количества молекул. Определение длин волн и интенсивностей возможных переходов в молекуле требует сложных вычислений или экспериментов, при этом нужно заранее предугадать, какая конструкция из атомов окажется интересной с астрохимической точки зрения! Повышение спектрального разрешения и чувствительности телескопов только усугубляет эту проблему. Например, в спектре туманности NGC 6334 (Скорпион), полученном на космическом телескопе Гершель1, доля неидентифицированных линий составляла всего 10%. На том же участке спектра, измеренном с более высокой чувствительностью на телескопе ALMA2, неизвестными оказались уже 70% линий.

1Телескоп «Гершель» – первая космическая обсерватория для полномасштабного изучения субмиллиметрового излучения в космосе. Работал с 2009 по 2013 год.

2Atacama Large Millimeter Array – комплекс радиотелескопов, расположенный в чилийской пустыне Атакама, который наблюдает электромагнитное излучение с миллиметровой и субмиллиметровой длиной волны.

Теперь о том, как рождается наблюдаемое разнообразие. Если мы просто возьмем атом водорода и атом углерода, они не начнут сами собой объединяться в более сложные молекулы. Сейчас лидирующее объяснение состоит в том, что для инициирования химических процессов в молекулярных облаках их вещество нужно немного ионизовать, потому что реакции между ионизованным и нейтральным реагентом идут гораздо быстрее, чем реакции между двумя нейтральными реагентами.

В 1973 году была предложена следующая картина: допустим, на какойто ранней фазе эволюции молекулярного облака в нем присутствуют нейтральные атомы и молекула H2. Космические лучи начинают ионизовать примесные атомы и молекулу водорода. Ион H2+ быстро реагирует еще с одной молекулой H2 и превращается в ион H3+. Дальше реализуется общая схема, которую лучше показать на примере кислорода. Либо в результате реакции между ионом О+ и молекулой H2, либо в результате реакции нейтрального атома О с ионом H3+ образуется ион OH+. Последовательные реакции с молекулой H2 приводят к формированию ионов H2O+ и H3O+. Ион H3O+ рекомбинирует с электроном, разваливаясь на молекулу воды и атом водорода или на радикал OH (гидроксил) и молекулу H2. Поскольку рекомбинация молекулярного иона, как правило, приводит не только к его нейтрализации, но и к развалу, она называется диссоциативной рекомбинацией.

Изначально предполагалось, что что-то похожее происходит и с углеродом, постепенно превращая его в метан, но все оказалось сложнее. Реакция иона углерода с молекулой H

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

«Ваша участь будет ужасная!» «Ваша участь будет ужасная!»

Кого из декабристов и как решил наказать Николай I?

Дилетант
Каждому по наклонностям Каждому по наклонностям

Режиссеры и их фирменные напитки

Weekend
Хозяйка острова Ро Хозяйка острова Ро

При жизни эта женщина была символом свободы, сопротивления и греческой нации

Дилетант
Молочные и мясные антигены сдерживают появление рака кишечника Молочные и мясные антигены сдерживают появление рака кишечника

Как пищевые антигены запускают иммунную систему кишечника

ТехИнсайдер
Самые интересные фильмы, в которых на первый взгляд ничего не происходит Самые интересные фильмы, в которых на первый взгляд ничего не происходит

Неспешные картины, которые намного интереснее современных блокбастеров

Maxim
Восток VS Запад Восток VS Запад

Как относятся к радостям жизни на Востоке и Западе

Добрые советы
Улучшение землепользования сделает сельское хозяйство углеродно-отрицательным к середине века Улучшение землепользования сделает сельское хозяйство углеродно-отрицательным к середине века

В 2050 мировой сельхозсектор может перейти к отрицательным углеродным выбросам

N+1
Бурлацкий стан Бурлацкий стан

Чем знаменито село Ширяево в Самарской области?

Отдых в России
«Не живи»: 10 жестоких родительских сценариев «Не живи»: 10 жестоких родительских сценариев

Какие ошибки допускают родители и как они могут отразиться на детях?

Psychologies
Снимаем барьеры Снимаем барьеры

Как бороться с психологическими барьерами, мешающими жить полноценной жизнью

Лиза
Ближний Дальний Восток Ближний Дальний Восток

Какие уроки истории стоит не забывать современным экономистам

Деньги
«Я пишу здесь только правду». Отрывок из дневников Ольги Берггольц «Я пишу здесь только правду». Отрывок из дневников Ольги Берггольц

Отрывок из дневниковых записях о последних днях жизни мужа Ольги Берггольц

СНОБ
Мамина гордость: как властная мать почти разрушила карьеру звезды сборной Франции Мамина гордость: как властная мать почти разрушила карьеру звезды сборной Франции

Как родственные связи могут погубить карьеру звездного спортсмена Рабьо

Forbes
Джефф-громовержец Джефф-громовержец

«Каос»: woke-повестка по-древнегречески

Weekend
3 роли, которые вынужденно играют дети в семье родителей-нарциссов 3 роли, которые вынужденно играют дети в семье родителей-нарциссов

«Золотой ребенок», «козел отпущения» — роли детей в семье нарциссов

Psychologies
И снова стать собой! И снова стать собой!

Как вернуть вкус к жизни: 12 рабочих приемов против апатии

Лиза
Все в шоколаде? Все в шоколаде?

Когда невинная тяга к сладкому перерастет в нездоровую зависимость?

Psychologies
Много вопросов, мало ответов: почему тесты на определение профессии не работают Много вопросов, мало ответов: почему тесты на определение профессии не работают

Кем быть? Как найти дело, которое не только нравится, но и приносит деньги?

Forbes
«Так живет большинство семей в России»: 4 типа невротичных пар «Так живет большинство семей в России»: 4 типа невротичных пар

Что такое невротичные отношения? Почему мы в них вступаем?

Psychologies
Младшие и старшие Младшие и старшие

Как дети разного возраста влияют друг на друга и как друг друга учат

Здоровье
8 потрясающих фактов о фильме «Битлджус» 8 потрясающих фактов о фильме «Битлджус»

«Битлджус» — фильм, который открыл для нас невиданный мир черных комедий

Maxim
Загадки русского языка: почему есть лето бабье, но нет мужичьего? Загадки русского языка: почему есть лето бабье, но нет мужичьего?

Почему лето называется именно бабьим?

ТехИнсайдер
Кто сделает новый ГОЭЛРО? Кто сделает новый ГОЭЛРО?

Какие болевые точки отрасли энергетики видны специалистам?

Монокль
Голова идет кругом Голова идет кругом

С жалобой на головокружение обычно не спешат к врачу. И напрасно!

Лиза
И не друг, и не враг, а так: как ИИ-разработчики развивают этические стандарты И не друг, и не враг, а так: как ИИ-разработчики развивают этические стандарты

Как разработчики ИИ реализуют известный принцип «не навреди»

Forbes
Ученые в восторге от буйволов: живые машины восстанавливают природу лучше любой техники Ученые в восторге от буйволов: живые машины восстанавливают природу лучше любой техники

Чем так полезны для природы буйволы?

ТехИнсайдер
Дело Дурова: где право и ключи? Дело Дурова: где право и ключи?

Что же французам было нужно от Павла Дурова на самом деле?

Монокль
Развенчиваем 5 самых известных мифов автомобильной индустрии Развенчиваем 5 самых известных мифов автомобильной индустрии

Ваш взгляд на автомир больше не будет прежним

Maxim
Действительно ли люди под алкоголем говорят то, что у них на трезвом уме? Действительно ли люди под алкоголем говорят то, что у них на трезвом уме?

Считается, что пьяный человек говорит правду и только правду, но так ли это?

ТехИнсайдер
Быстрее, выше, сильнее: как 3D-технологии меняют обувь Быстрее, выше, сильнее: как 3D-технологии меняют обувь

Аддитивные технологии обещают приспособить под производство идеальной обуви

Монокль
Открыть в приложении