Чем известен лауреат Абелевской премии 2021 года

N+1Наука

По грани вычислимого

Чем известен лауреат Абелевской премии 2021 года

Даниил Мусатов

17 марта Норвежская академия наук объявила лауреатов Абелевской премии 2021 года: ими стали Ласло Ловас и Ави Вигдерсон — за «фундаментальный вклад в теорию компьютерных наук и дискретную математику и ведущую роль в их формировании как центральных областей современной математики». По просьбе N + 1 о работах одного из лауреатов, Ави Вигдерсона, рассказывает Даниил Мусатов, доцент кафедры дискретной математики Физтех-школы прикладной математики и информатики МФТИ.

Вообще говоря, теоретическую информатику можно считать разделом математики, вот только постановки задач в ней берутся не из физики, как в математическом анализе, и не из экономики, как в теории игр, а из практических или фундаментальных вопросов в программировании, проектировании информационных систем и других сферах, связанных с вычислительными устройствами. Можно сказать, что основным предметом этой области является разграничение между задачами, которые в принципе решаются на компьютере, и теми, чье решение невозможно. В отличие от других разделов математики, здесь очень большая часть результатов носит условный характер: они верны и осмысленны только в случае истинности той или иной недоказанной гипотезы. Из этих гипотез выделим и кратко опишем две важнейшие: неравенство классов P и NP и существование односторонних функций. Они важны для понимания как состояния теории в целом, так и вклада Вигдерсона.

Ави Вигдерсон родился в 1956 году в израильской Хайфе. Оба его родителя пережили Холокост, потеряв почти всех родственников. После нацистской оккупации Польши его отец, будучи 17-летним юношей, сумел бежать в СССР, где добрался до Ашхабада, устроился инженером на электростанцию и проработал все военные годы. По словам Ави, отец сыграл огромную роль в его становлении как исследователя: он с раннего детства прививал сыну любовь к математике и очень любил рассказывать окружающим об устройстве разных приборов, чем показывал пример научного обсуждения.

Ави Вигдерсон. Ednawig / wikimedia commons / CC BY-SA 4.0

P=NP?

Проблема равенства P и NP была поставлена ровно полвека назад, в 1971 году, независимо в работах американо-канадского математика Стивена Кука и советского математика Леонида Левина (позднее он также эмигрировал в США из-за политического преследования в СССР). Если говорить кратко, то проблема заключается в оценке алгоритмической сложности переборных задач.

Разберемся сначала, о каких задачах идет речь и что такое алгоритмическая сложность. Задачи здесь изучаются массовые, то есть содержащие бесконечное число различных формулировок: решить уравнение (x2 + 20x + 21 = 0) — это конкретная задача, а решить уравнение (x2 + px + q = 0) для всех p и q — массовая. Кроме того, мы ограничимся дискретными задачами с бинарным ответом. Дискретность означает, что условие записывается конечным числом битов — например, p и q должны быть целыми. Бинарность ответа означает, что ответ будет «да» или «нет»: нужно не найти решение, а указать, есть ли оно.

Нас будут интересовать алгоритмические решения, то есть компьютерные программы, которые принимают на вход условие задачи, и, проработав некоторое время, возвращают правильный ответ. Сложность задачи определяется временем работы алгоритма. Поскольку разных условий бесконечно много, смотрят не на конкретные числа, а на порядок роста времени решения в зависимости от размера задачи (в битах). Говорят, что алгоритм полиномиален, если время его работы растет как многочлен, то есть с задачами размера n алгоритм работает не дольше, чем cnd для некоторых констант c и d. На практике редко используют алгоритмы со степенью многочлена больше 3, но в теории полиномиальность считается синонимом вычислительной эффективности. Это может показаться странным: если время растет как n20, то работа с задачей из 10 битов потребует мощнейшего суперкомпьютера, а если время растёт как n100, то вычисления будут принципиально нереализуемы в силу физических причин. Почему же мы считаем такие алгоритмы эффективными? Во-первых, любая конкретная граница была бы произвольной и зависела бы от особенностей компьютерной архитектуры. Во-вторых, как правило, если какой-то полиномиальный алгоритм для решения задачи мы нашли, то дальше его можно улучшать, чтобы сделать реализуемым на практике.

Класс P как раз объединяет все задачи, для которых найдется хоть какой-то полиномиальный алгоритм.

Теперь определим, что такое класс NP, или же класс переборных задач. Пусть есть задан некоторый эффективный, то есть полиномиальный алгоритм, проверяющий, является ли данная запись решением данной задачи. Вот примеры:

  • дан граф социальной сети, нужно проверить, верно ли, что в данной группе людей все знакомы друг с другом;
  • дана головоломка судоку, нужно проверить, является ли данное заполнение квадрата ее решением;
  • дано число побольше и число поменьше, нужно проверить, что первое делится на второе;
  • дан список требований, которым должно удовлетворять расписание занятий (например, у одного преподавателя не должно быть двух занятий одновременно или слишком большого числа занятий подряд), нужно проверить их выполнение в данном расписании;
  • даны аминокислотная и пространственная структуры белка, нужно проверить, действительно ли белок так свернется;
  • дана математическая теорема и формальная запись ее доказательства, нужно проверить корректность доказательства.

В каждом примере возникает задача о наличии подходящей записи: есть ли решение у головоломки, реализуемы ли требования к расписанию, доказуема ли теорема и так далее. (В случае с теоремой важно, чтобы доказательство было полиномиальной длины). Подобные задачи и образуют класс NP. Их можно придумать огромное количество, и для решения каждой из них возникает переборный алгоритм: рассмотрим все допустимые записи и про каждую из них проверим, является ли она подходящей. В процессе такого перебора либо нужное решение найдется, либо станет ясно, что его не существует. Однако такой перебор будет слишком долгим — экспоненциальным, — и начиная с некоторого размера задачи компьютер с ним никогда не справится — ни существующий, ни любой мыслимый. Вопрос заключается в следующем: есть ли универсальный способ сократить такой огромный перебор до полиномиального, то есть включено ли NP в P?

Для некоторых задач сократить перебор можно: например, третий пример из списка выше соответствует известнейшей задаче о проверке числа на простоту (точнее, тут проверка обратная: есть ли у числа делитель, то есть является ли число составным). В 2002 году индийские математики Маниндра Агравал, Нирадж Каял и Нитин Саксена опубликовали алгоритм (ставший известным под названием AKS по первым буквам фамилий авторов), проверяющий простоту за полиномиальное время, и показали, что в этой задаче большой перебор не нужен. Тут стоит отметить, что многочлен измеряется не от самого числа, а от количества знаков в его десятичной записи, то есть от его логарифма.

Однако для множества других задач подобных алгоритмов не найдено и есть серьезные основания полагать, что их и нет. В конце концов, это прекрасно согласуется с обычной интуицией: в большинстве жизненных задач найти подходящий вариант куда сложнее, чем оценить предложенный. При этом решения задач об оптимальном расписании или о сворачивании белков могли бы кардинально улучшить повседневную жизнь людей, а решение задачи о поиске доказательств теорем — радикально продвинуть наши знания в математике.

Возможность криптографии

С другой стороны, P≠NP — необходимое требование для работы почти любых криптографических протоколов. Большинство из них можно взломать, перебрав возможные ключи или пароли, а их надежность строится на том, что такой перебор неосуществим, а более эффективных способов взлома нет. Если же P=NP, то такие способы есть и, вполне возможно, они осуществимы и на практике. Поэтому такое открытие поставило бы под угрозу все современное мироустройство, что обыграно в фильме Travelling Salesman.

Однако один только факт, что P≠NP, криптографию не спасет. Когда речь идет о сложности алгоритмических проблем, время работы измеряется в худшем случае: если в каких-то ситуациях алгоритм работает долго, то задача считается сложной. Для криптографии этого недостаточно: алгоритм взлома должен работать долго не время от времени, а всегда или почти всегда.

И тут необходимым условием является существование односторонней функции: такой, что по аргументу можно быстро вычислить значение, а вот по значению вычислить хоть какой-то его прообраз почти невозможно. Известным кандидатом на роль такой функции является перемножение чисел: это очень простая операция, а вот разложить число на множители может быть сложно. И AKS-алгоритм тут не поможет: он говорит, есть ли у числа нетривиальные множители, но не помогает их найти. Зато потенциально может помочь квантовый компьютер, для которого есть алгоритм Шора. Однако и квантовые компьютеры не взломают все криптографические протоколы: например, им не поддаются большинство криптографических хеш-функций, а также криптографические протоколы, построенные на задачах из теории решеток.

P=BPP?

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

3 ключа к скрытым ресурсам тела, сознания и души 3 ключа к скрытым ресурсам тела, сознания и души

Как добраться до внутреннего источника энергии

Psychologies
Флекситарианство: что нужно знать о вегетарианстве со стейками и бургерами Флекситарианство: что нужно знать о вегетарианстве со стейками и бургерами

Гибкое вегетарианство – диета, неоднократно признававшаяся самой здоровой

Cosmopolitan
Насилию бой! Насилию бой!

Ответы на самые сложные и популярные вопросы о насилии

Maxim
Полный гид по интервальному голоданию: когда и что есть, чтобы похудеть Полный гид по интервальному голоданию: когда и что есть, чтобы похудеть

Хвастаться часами голода – новая мода, но насколько она полезна и эффективна?

Cosmopolitan
Орнитологи насчитали рекордное количество редчайших австралийских попугайчиков Орнитологи насчитали рекордное количество редчайших австралийских попугайчиков

Золотистобрюхие травяные попугайчики — одни из самых редких попугаев мира

N+1
Слава, мы вернулись Слава, мы вернулись

Истории великих возвращений героев

Men’s Health
Стихи, наручники, клопы. Два года из жизни приморской оппозиционерки, которая стала объектом внимания сотрудника Центра «Э» Стихи, наручники, клопы. Два года из жизни приморской оппозиционерки, которая стала объектом внимания сотрудника Центра «Э»

Историю взаимоотношений оппозиционерки Марии Зинченко с полицейским

СНОБ
6 самых страшных советских маньяков 6 самых страшных советских маньяков

Не Чикатило единым славилась советская криминалистика

Maxim
7 пессимистичных фактов о современных отношениях 7 пессимистичных фактов о современных отношениях

Реальность не может успокоиться и вносит свои коррективы в современные отношения

Maxim
Nissan Murano. Кроссовер-терапевт Nissan Murano. Кроссовер-терапевт

Nissan Murano – редкий автомобиль, способный удивить даже избалованного водителя

4x4 Club
Боевой товарищ Боевой товарищ

Самые интересные факты из биографии самого серьезного актера наших дней

Glamour
«Лидера легко разоблачить»: зачем главе бизнеса самому общаться с сотрудниками и клиентами в интернете «Лидера легко разоблачить»: зачем главе бизнеса самому общаться с сотрудниками и клиентами в интернете

Должен ли лидер компании общаться с клиентами и подчиненными в соцсетях?

Forbes
Колбаса без диссидентов. Почему Путин добивает организацию Навального Колбаса без диссидентов. Почему Путин добивает организацию Навального

Кремль собирается ликвидировать ФБК* и обеспечить «стабильность»

СНОБ
История роторной энергетики: как изобретали колесо. Заново История роторной энергетики: как изобретали колесо. Заново

Когда появились простейшие варианты роторных устройств установить невозможно

Популярная механика
Любимый комик всей Америки Эллен Дедженерес — о хламе, продаже винтажного дуршлага и элементарной вежливости Любимый комик всей Америки Эллен Дедженерес — о хламе, продаже винтажного дуршлага и элементарной вежливости

Отрывок из книги Эллен Дедженерес «Кроме шуток»

Forbes
Истребитель дронов Истребитель дронов

За разведывательными дронами начнут охотиться беспилотные истребители

Популярная механика
Повышение болевого порога у рыжих объяснили работой меланоцитов Повышение болевого порога у рыжих объяснили работой меланоцитов

У мышей с рыжей шерстью болевой порог оказался повышен из-за работы меланоцитов

N+1
Камера, мотор! Камера, мотор!

Кинопродюсер Дмитрий Литвинов показал свой дом

AD
2010-е: архивация 2010-е: архивация

Знаковые вещи, определившие облик эпохи 2010–2020 годов, уходят со сцены

Maxim
Сервис доставки продуктов за 15 минут в Калифорнии с российскими корнями привлек $2 млн Сервис доставки продуктов за 15 минут в Калифорнии с российскими корнями привлек $2 млн

Как россиянин Виталий Александров основал сервис доставки продуктов Food Rocket

Forbes
«Mersedes на детские деньги»: история самого многодетного отца России «Mersedes на детские деньги»: история самого многодетного отца России

Николай Стремский известен как глава огромного семейства

Cosmopolitan
Как животные входили в историю кино Как животные входили в историю кино

Живые или мертвые: животные в истории кино

Weekend
Несносная мода Несносная мода

Новые экостандарты в фешен-индустрии сделают вечными одежду и обувь

РБК
Павел Пепперштейн: Никогда не развивался. Я ненавижу развитие Павел Пепперштейн: Никогда не развивался. Я ненавижу развитие

Интервью с одни из главных современных художников России Павлом Пепперштейном

СНОБ
Новый ISUZU D-Max и его железные аргументы Новый ISUZU D-Max и его железные аргументы

Новый ISUZU D-Max – новое поколение пикапов

4x4 Club
Роковые красотки: как изменились Кондулайнен, Сотникова и другие актрисы 90-х Роковые красотки: как изменились Кондулайнен, Сотникова и другие актрисы 90-х

Девяностые запомнились россиянам доступностью ранее недозволенного

Cosmopolitan
Родись красивой: 10 самых привлекательных девушек из сериалов Родись красивой: 10 самых привлекательных девушек из сериалов

10 симпатичных актрис, которые привлекают мужчин и женщин

Cosmopolitan
Американская мечта для корейской семьи. О фильме «Минари», который получил шесть номинаций на «Оскар» Американская мечта для корейской семьи. О фильме «Минари», который получил шесть номинаций на «Оскар»

Фильм «Минари» — история семьи, которая пыталась найти американскую мечту

СНОБ
Исследование выявило секрет успеха в карьере — особенно для женщин Исследование выявило секрет успеха в карьере — особенно для женщин

Что может повредить карьере женщин

Inc.
Девятая планета Солнечной системы может скрываться вовсе не там, где мы думали Девятая планета Солнечной системы может скрываться вовсе не там, где мы думали

Возможно, Девятую планету все это время искали не там, где нужно

Популярная механика
Открыть в приложении