Как электроны связаны с современной наукой?

Наука и жизньНаука

Премия за самый короткий импульс света

Кандидат физико-математических наук Алексей Понятов

Фотография пчелы у цветка. Выдержка слишком велика, поэтому крылья, движущиеся с большой частотой, размазались и видны лишь в виде полупрозрачного облачка. Источник: pixabay.com

Словно следуя заветам Альфреда Нобеля, премию по физике в 2023 году Нобелевский комитет вручил исключительно экспериментаторам, хотя без значительного вклада теоретиков решить проблему не удалось бы. «За экспериментальные методы генерации аттосекундных импульсов света для изучения динамики электронов в веществе» лауреатами стали Пьер Агостини (Франция, США), Ференц Краус (Венгрия, Австрия, Германия) и Анн Л’Юилье (Франция, Швеция). Используя очень короткие импульсы света длительностью в аттосекунды, можно изучать поведение электронов внутри атомов и молекул в реальном времени. Лауреаты Нобелевской премии по физике этого года дали исследователям инструмент для подобных исследований, по сути, основав новый раздел физики. Анн Л’Юилье стала пятой женщиной, получившей Нобелевскую премию по физике за все годы, и второй за последние пять лет.

Очень многое в современной науке и технологиях связано с электронами, буквально — вездесущими частицами. Они определяют свойства атомов, строение вещества, химические реакции и большое число физических процессов. На их основе работает электроника и другие разнообразные устройства. Их используют для различных исследований — от физических до медицинских. Поэтому учёные всегда стремились получить в свои руки всё более совершенные инструменты для исследования поведения электронов, измерения их характеристик и управления ими. На этом пути были достигнуты огромные успехи, но подробности очень важных и интересных процессов, которые происходят с электронами в атомах и молекулах, долгое время оставались для исследователей невидимыми, поскольку не существовало инструментов, способных их «разглядеть».

Слева направо. Пьер Агостини. Ференц Краус. Анн Л’Юилье. Источник: osu.edu, Thorsten Naeser/www.attoworld.de/CC BY 2, Bengt Oberger/Wikimedia Commons/CC BY-SA 3.0

Всё дело в том, что заметные изменения положения и энергии электронов внутри атомов и молекул происходят в лучшем случае за сотни аттосекунд (1 ас = 10−18 с). Для обхода атома водорода электрону потребуется около 150 ас. А часто перемены происходят даже за доли аттосекунды. Аттосекунда — экстремально короткий промежуток времени, миллиардная доля миллиардной доли секунды. За 13,8 миллиарда лет, прошедших с момента возникновения нашей Вселенной, секунд прошло в два раза меньше, чем аттосекунд содержится в одной секунде. Свет, который за одну секунду преодолевает 300 000 км (более семи длин экватора Земли), за 1 ас успевает пройти расстояние всего в 2,5 атома водорода.

Чтобы различить детали быстрого процесса, инструмент исследователя должен работать ещё быстрее. Можно провести аналогию с фотографированием. Когда делают снимок объекта, движущегося с большой скоростью, выдержка фотоаппарата (время, в течение которого открыт его затвор, свет поступает на матрицу или плёнку и формируется снимок) должна быть существенно меньше, чем время значительного изменения положения объекта. Иначе за время экспозиции его изображение будет перемещаться по кадру и фотография станет размытой и непонятной. Так, пчела во время полёта совершает около 200 взмахов крыльями в секунду или 1 взмах за 0,005 с. Поэтому, чтобы на фотографии было видно положение крыльев, выдержка должна быть значительно меньше 0,005 с.

Для исследования электронов физики используют спектроскопию, основанную на изучении того, как вещество поглощает или излучает свет при облучении его импульсом света. Это похоже на работу стробоскопа: короткая вспышка света выхватывает из темноты перемещающийся объект, создавая впечатление, что он неподвижен. Многие наблюдали подобную картину на концертах и дискотеках. Таким образом, чтобы разобрать детали электронных процессов, импульс должен быть значительно короче времени их протекания, то есть иметь аттосекундную длительность. Однако генерация подобных импульсов оказалась сложнейшей задачей!

Свет — электромагнитная волна, следовательно, минимальная протяжённость импульса света в пространстве должна быть сопоставима с его длиной волны (λ), а во времени — с периодом колебаний. Период 100 ас (частота 1016 Гц) соответствует самому коротковолновому, экстремальному ультрафиолетовому излучению (XUV), а меньшие длительности попадают уже в рентгеновский диапазон. Физики умеют получать электромагнитное излучение такой частоты с помощью, например, так называемого лазера на свободных электронах, где оно генерируется ускоренным пучком электронов, распространяющимся в ондуляторе*. Однако огромные габариты и дороговизна таких установок не позволяют их использовать для проведения широких исследований. Другие методы неудобны для создания столь коротких импульсов, ведь мало сгенерировать нужную частоту, надо ещё создать способ очень быстрого включения-выключения света. Никакие электронные, а тем более механические средства на это неспособны.

Так что альтернативы обычному лазерному излучению пока нет. Но уже диапазон ультрафиолета, не говоря о рентгеновском, сложен для лазерной генерации. Используемый для исследований титан-сапфировый лазер выдаёт излучение с λ ≈ 800 нм, или период примерно 2,7 фемтосекунды (1 фс = 10−15 с). Это ближний инфракрасный диапазон, однако специально разработанный метод получения первых гармоник излучения помогает достичь ультрафиолета. Создание фемтосекундных лазерных импульсов, получивших название ультракоротких, потребовало значительных усилий, недаром за разработку метода их генерации в 2018 году Жерару Муру и Донне Стрикленд была присуждена Нобелевская премия по физике*. Довольно долгое время на практике самый короткий импульс был около 5 фс. Это замечательно, но для электронов недостаточно. С его помощью можно изучать более медленные процессы с тяжёлыми по сравнению с электронами атомами. За исследование химических реакций с использованием фемтосекундной техники в 1999 году Нобелевскую премию по физике получил Ахмед Зевейл**.

* См. статью: А. Понятов. Манипулируя светом. — «Наука и жизнь» № 12, 2018 г.

** См. Нобелевские премии 1999 года. — «Наука и жизнь» № 2, 2000 г.

Общий спектр генерации высоких гармоник (HHG) — зависимость их интенсивности от частоты (номера) гармоники. Сначала интенсивность падает, затем остаётся постоянной (плато) и, наконец, снова падает (отсечка). Рисунок (с изменениями): Johan Jarnestad/The Royal Swedish Academy of Sciences.

Однако для получения более коротких аттосекундных импульсов потребовался совершенно другой подход. Здесь на помощь физикам пришла математика (Фурье-анализ), которая предсказывала, что, оказывается, такой короткий импульс можно создать сложением достаточного количества волн ультрафиолетового и рентгеновского диапазонов правильной амплитуды и фазы. Правда, чем короче надо получить импульс, тем большее число волн нужно сложить. Причём волны должны быть распределены по большому диапазону частот, различающихся в несколько десятков раз. Проблема в том, что эти волны надо сначала каким-то образом сгенерировать, так что просто лазера здесь мало.

История аттосекундных импульсов началась в 1987 году, когда Анн Л’Юилье и её коллеги из французского Центра ядерных исследований Сакле (в настоящее время Париж-Сакле) обнаружили, что при прохождении мощного инфракрасного фемтосекундного лазерного света через газ аргон тот начинает излучать большое число когерентных (то есть колеблющихся согласованно) световых волн более высокой частоты с удивительными свойствами. Частоты волн были кратны основной лазерной частоте, другими словами, были больше неё в целое число раз. Такие колебания физики называют обертонами, или гармониками. Само явление наблюдали не впервые, его регистрировали ещё в 1977 году. Удивительным в этот раз было поведение амплитуды обертонов. Интенсивность излучения нечётных гармоник сначала довольно резко уменьшилась с увеличением их номера, затем была почти постоянной от 5-й и примерно до 33-й гармоники (плато спектра), а затем снова уменьшилась.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Настоящий имперец Настоящий имперец

Ни один другой немецкий политик не был использован так сильно, как Бисмарк

Дилетант
Гибкий график работы может «омолодить» сердце на 10 лет Гибкий график работы может «омолодить» сердце на 10 лет

Как график работы влияет на здоровье сердца?

ТехИнсайдер
Ослепительная четверка Ослепительная четверка

Эти женщины вершили китайскую историю, губили и спасали царств

Вокруг света
Высокое искусство прощания Высокое искусство прощания

Топ‑10 фильмов-завещаний

Weekend
От мала до велика От мала до велика

Рассматриваем рекордсменов из царства животных

Наука и жизнь
«Сейчас такой период, когда меня наконец увидели» «Сейчас такой период, когда меня наконец увидели»

К 17 годам актриса Лиза Ищенко успела громко заявить о себе, и это не случайно!

OK!
Не за что судить Не за что судить

Тайны советского туризма 70-х: почему некоторые не возвращались из походов?

Дилетант
Что будет, если питаться фастфудом каждый день Что будет, если питаться фастфудом каждый день

Как фастфуд влияет на физическое и психическое здоровье?

РБК
Священный знак Священный знак

«Кого Юпитер хочет опозорить, лишает своего орла»

Дилетант
Идущие за лучом Идущие за лучом

Управление мозгом с помощью света порождает много надежд и столько же опасений

Вокруг света
12 интересных фактов об Ан-2 — самолете, попавшем в книгу рекордов Гиннесса 12 интересных фактов об Ан-2 — самолете, попавшем в книгу рекордов Гиннесса

Биплан Ан-2 был принят в эксплуатацию 75 лет назад — и до сих пор востребован

Maxim
Плоды революции Плоды революции

В каком направлении идет развитие «тихой» яхтенной революции?

Y Magazine
Бизнес по-русски Бизнес по-русски

Arrizo 8 как симптом и символ

Автопилот
Излишняя скромность Излишняя скромность

7 неочевидных сигналов, которые выдают неуверенного человека

Лиза
Слепки эпохи: что мешает востребованности Единой биометрической системы Слепки эпохи: что мешает востребованности Единой биометрической системы

Жесткое регулирование биометрии может помешать развивать новые сервисы

Forbes
10 самых ярких Ferrari, о которых стыдно не знать мужчине 10 самых ярких Ferrari, о которых стыдно не знать мужчине

Изучаем культовую и самую дорогую продукцию Ferrari

Maxim
Бум пара! Бум пара!

Татьяна Буланова и Алексей Жидковский отправились в лютый рестохопинг

Собака.ru
Lexus LX 600 F Sport. Универсальный внедорожный премиум Lexus LX 600 F Sport. Универсальный внедорожный премиум

Новый Lexus LX – премиальный внедорожник, который вполне можно испачкать в грязи

4x4 Club
Заносить перо в рану Заносить перо в рану

Альбер Лондр — классик французской расследовательской журналистики

Дилетант
Помните Макдоналдс? Вот как чизбургер и наггетсы связаны с вашей личностью! Помните Макдоналдс? Вот как чизбургер и наггетсы связаны с вашей личностью!

Заказ определенного блюда может многое рассказать о том, какой вы человек

ТехИнсайдер
Как научиться понимать творчество Ван Гога. Отрывок из книги искусствоведа Как научиться понимать творчество Ван Гога. Отрывок из книги искусствоведа

Глава из книги искусствоведа Елены Легран «Разгадай код художника»

СНОБ
5 лучших безалкогольных коктейлей на новогодние праздники 5 лучших безалкогольных коктейлей на новогодние праздники

Интересные напитки для тех, кто не пьет алкоголь

ТехИнсайдер
Александр Олешко: «Гурченко этой фразой давала мне шанс исправить ситуацию...» Александр Олешко: «Гурченко этой фразой давала мне шанс исправить ситуацию...»

Александр Олешко — о Валентине Леонтьевой, любви к дикторам и телевидении

Коллекция. Караван историй
E-SIM в часах: действительно ли она вам нужна E-SIM в часах: действительно ли она вам нужна

E-SIM действительно очень удобная функция, но так ли она нужна?

CHIP
Гонимая и ненагражденная Гонимая и ненагражденная

Почему Лиза Мейтнер так и не получила Нобелевскую премию

Знание – сила
Наше благородие Наше благородие

Попробуем найти универсальные черты «воспитанного человека»?

VOICE
Можно ли сделать квашеную капусту без соли: гипертоникам это будет интересно Можно ли сделать квашеную капусту без соли: гипертоникам это будет интересно

Одно из изысканнейших лакомств русской кухни и кладезь витаминов

ТехИнсайдер
Стеклянный небосвод вместо стеклянного потолка. Отрывок из книги о женщинах-астрономах Стеклянный небосвод вместо стеклянного потолка. Отрывок из книги о женщинах-астрономах

История первых женщин-астрономов

СНОБ
Неуверенность в общении с мужчинами: откуда возникает и как побороть Неуверенность в общении с мужчинами: откуда возникает и как побороть

Почему во время общения с мужчинами вы чувствуете себя неуверенно?

Psychologies
Пивные миллионы: сколько в мире зарабатывают клубы и стадионы на кейтеринге Пивные миллионы: сколько в мире зарабатывают клубы и стадионы на кейтеринге

Сколько приносит продажа пенного напитка на стадионах?

Forbes
Открыть в приложении