Академик Юрий Оганесян — что происходит внутри атомного ядра

Наука и жизньРепортаж

Академик Юрий Оганесян: Познание сильного взаимодействия изменит мир

Что происходит внутри атомного ядра, как ведут себя ядра на границах их существования и что может измениться, если физики поймут природу сильного взаимодействия?

Беседу ведёт Наталия Лескова

Юрий Цолакович Оганесян в мемориальном кабинете академика Г. Н. Флёрова в Лаборатории ядерных реакций его имени (в 2022 году ей исполняется 65 лет), у грифельной доски с надписями, сделанными Г. Н. Флёровым и Ю. Ц. Оганесяном. Её хранят под стеклом, как экспонат.

Рассказывает академик Юрий Цолакович Оганесян, научный руководитель Лаборатории ядерных реакций Объединённого института ядерных исследований в подмосковной Дубне. Среди его научных заслуг — фундаментальные исследования механизма взаимодействия сложных ядер, обнаружение и исследование влияния ядерной структуры на коллективное движение ядер в процессах слияния и деления, открытие нового класса ядерных реакций — холодного слияния массивных ядер, широко используемых по настоящее время в различных лабораториях мира для синтеза новых элементов. Ю. Ц. Оганесян — соавтор открытия ряда тяжёлых элементов таблицы Д. И . Менделеева, а 118-й элемент назван в его честь.

— Юрий Цолакович, когда началось ваше увлечение таблицей Менделеева? И почему важно её расширять?

— Меня «привязывают» к знаменитой Таблице, но я не химик, а физик. Я всю жизнь занимаюсь ядерной физикой. Ведь известно, что в атоме есть ядро и вокруг ядра вращаются электроны. Атомы — они же элементы, с различными названиями и свойствами в зависимости от заряда ядра. А вот как ведёт себя этот элемент при взаимодействии с другими элементами — это уже химия. Но меня интересовало не то, где предел Таблицы, а где предел существования ядер.

— И где этот предел?

— Это серьёзный вопрос. Между прочим, пределы существования ядер и элементов разные, потому что сама материя разная. Ядерная материя — удивительная субстанция маленького размера и огромной плотности, которая несёт весь положительный заряд и всю массу атома. А вокруг ядра на большом расстоянии вращаются электроны на своих орбитах. Не знаю, насколько удачно моё сравнение, но всё это мне напоминает большую люстру: в середине — мощная лампа, а вокруг лампы в несколько рядов вращаются висюльки. Они светят отражённым от лампы светом. И если вы предположите, что ваше ядро размером с апельсин находится возле мавзолея на Красной площади, то первой орбитой, по которой вращаются электроны, будет Садовое кольцо. Вторая орбита будет кольцевой автодорогой. А последняя орбита окажется где-то около Стокгольма. Вот такая ажурная люстра!

— Кончается ли эта «люстра»?

— Да, кончается. Всё имеет начало и конец. Обычно это выражение относится к человеческой жизни. Но оно справедливо и для мироздания в том смысле, что любая система, большая или малая, стремится занять упорядоченное состояние с наименьшей потенциальной энергией. Отсутствие конца, скорее всего, объясняется отсутствием знаний об этом конце.

— Где же она кончается?

— Первый предел связан с центром, с самой «лампой». Но если можно было бы сделать «лампу» любой мощности, то второй предел наступил бы там, где кончается конструкция самой «люстры». Потому что согласно квантовой электродинамике положительный заряд ядра, а в соответствии с ним и число отрицательно заряженных электронов имеют предел. Вот эти два предела можно обсуждать.

Но мне кажется, что конец ядра придёт раньше, потому что мы сейчас, находясь в области 118-го или 120-го элементов, уже подошли к самой границе существования ядер. А предел существования «гирлянды» — атомные номера около 174. Поэтому пока тратим время, силы и деньги не на Таблицу, а на ядерную физику. Но скоро начнём серьёзно заниматься химией сверхтяжёлых элементов. От Таблицы далеко не уйдёшь!

— Как вы думаете, наступит ли момент, когда она устареет и потребует обновления подобно Стандартной модели в физике?

— Сам Менделеев считал, что Таблица будет меняться, но открытый им Периодический закон останется.

— Что вы узнали о ядре основополагающего, важного?

— Мы знаем, что это удивительная субстанция, и она физике ещё до конца не понятна. Нет строгой теории, как в электричестве, когда можно рассчитать всё от громадной электростанции до маленького чипа. Есть теоретические модели. Но как сцеплены протоны и нейтроны в ядре, мы пока не знаем. Несмотря на это, мы используем атомную энергию во многих областях нашей деятельности. Природа ядерных сил, называемых сильным взаимодействием, — огромный вопрос, который остаётся пока открытым.

В природе, как вы знаете, есть четыре типа взаимодействия — электромагнитное, сильное, слабое и гравитационное. Сильное взаимодействие так называется потому, что оно сильнее электромагнитного в сотни раз. Если бы это злополучное сильное взаимодействие было изучено так, как это имеет место с электромагнитным или слабым взаимодействием, мне кажется, мир бы совершенно преобразился.

— Почему же оно злополучное?

— Потому что эта задача очень сложна. При этом мы понимаем: если мы овладеем сильным взаимодействием, то оно преобразует наш мир, как это было после Фарадея. Представьте себе электричество, без которого мы не мыслим сегодня свою жизнь, только сильнее в сотни раз!

— Как вы думаете, удастся в конце концов понять, как «работает» сильное взаимодействие?

— Думаю, да. Рано или поздно это будет сделано.

— Какими способами? С какой стороны нужно подходить?

— Одна сторона такова: ведь никто не сомневается, что есть ядро. Оно состоит из протонов и нейтронов — это тоже известно. Значит, когда-то оно образовалось, когда-то возникли эти протоны и нейтроны, когда-то они слепились. Есть Стандартная модель, которую, с моей точки зрения, необоснованно и часто ругают, потому что она не в состоянии всё объяснить. Но она даёт представление о том, что протоны и нейтроны состоят из кварков, а кварки «склеены» глюонами (glue — это клей по-английски). Понять бы, как это происходило в природе?

Начали исследовать. Двигаясь от конца к началу. Мы знаем, что молекула состоит из атомов, атом — из ядра и электронов, само ядро — из протонов и нейтронов. Протоны и нейтроны состоят из кварков и глюонов. А дальше, микросекундой ранее — Большой взрыв. Всё, конечно, развивалось в обратном направлении: сначала взрыв, потом идёт очень быстрый процесс крупномасштабных изменений материи, в которой через одну микросекунду после взрыва при огромной плотности и высокой температуре рождаются протоны и нейтроны. Иногда эту фазу называют кварк-глюонной плазмой. У физиков есть желание исследовать этот «суп» и увидеть, как рождаются протоны и нейтроны. Создаются большие ускорители, у нас строится коллайдер NICA для исследования подобной горячей материи.

Вообще, стадийность движения от беспорядка к порядку прослеживается во всей истории образования Вселенной, насчитывающей 13,7 миллиарда лет. А физики, живущие на Земле, хотят, наоборот, создать «беспорядок» из протонов и нейтронов в надежде потом увидеть и понять, как из кварк-глюонной плазмы вновь рождаются протоны и нейтроны.

— Как бы смоделировать сотворение мира?

— Именно так. Задача эта, по сути, не новая. Но, рассматривая различные сценарии сотворения мира (из них самый популярный — Большой взрыв), мы невольно двигаемся в глубь строения материи.

Сегодня экспериментаторы добрались до стадии возникновения кварков и глюонов. До субстанции, возникшей через одну микросекунду после Большого взрыва. Однако понять свойства вещества, состоящего из этих кварков и глюонов, и то, как взаимодействуют эти частицы, пока не удаётся. Отсюда неясна и сама природа ядерных сил.

Конечно, точно смоделировать сотворение мира мы никогда не сможем, потому что там участвовали огромные массы, а температуры достигали триллионов градусов. Но разгонять тяжёлые ядра, которые состоят из многих протонов и нейтронов, до огромной энергии, сталкивать их лоб в лоб в коллайдерах научились. В зоне столкновения ядерная материя уплотняется, температура в этом месте повышается до триллиона градусов — часть протонов и нейтронов «расплавится» в кварки и глюоны. Важно распознать, что это действительно произошло, а распознав, заняться этим делом основательно, чтобы понять, как образуются протоны и нейтроны.

Вопросов здесь много. Например, почему именно три кварка участвуют в создании протона и нейтрона?

— Как я понимаю, если бы стали возможны другие варианты, не три, а два или четыре, всё было бы иначе. Или ничего бы не было?

— Вот и надо понять, почему именно так всё устроено. А потом мы будем пользоваться этим, подобно тому, как мы пользуемся электричеством. Но, как мне кажется, далеко потом.

— А что было до Большого взрыва, когда ничего не было?

— Тоже интересный вопрос. Ответа на него пока нет. Почему этот взрыв произошёл? Имеются разные сценарии, концепции, но всегда обсуждается то, что было после взрыва. И был, как считают, безумно короткий промежуток, когда появились понятия времени и пространства. Как бы были вброшены эти понятия, когда всё менялось очень быстро, быстрее скорости света. Что значит «быстрее скорости света», тоже трудно представить, потому что Стандартная модель ограничивает скорость — скоростью света. А потом расширение продолжалось, но значительно медленнее, хотя и с ускорением. Расширение Вселенной идёт до сих пор. Когда появились протоны и нейтроны, они стали взаимодействовать друг с другом и комбинироваться в ядра. Так проявилось сильное взаимодействие.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Немирное «земледелие» Немирное «земледелие»

Как работает система залпового минирования

Популярная механика
Нерусская водка: какие бренды популярнее всего за рубежом Нерусская водка: какие бренды популярнее всего за рубежом

О самых популярных брендах иностранной «беленькой»

Maxim
БИНТИ БИНТИ

Бюро иностранной научно-технической информации

Наука и жизнь
«Кухня Древнего мира» «Кухня Древнего мира»

О сырах, которые в Древнем Риме считались скромной пищей

N+1
Русское серебро. Начало Русское серебро. Начало

Как в России искали и добывали серебро

Наука и жизнь
Дрифт без правил Дрифт без правил

«Жига. На полной скорости»: каким получился фильм о дрифтинге в России?

Автопилот
Земля. Прятки под мантией Земля. Прятки под мантией

Ядро Земли перестало вращаться, электромагнитное поле нашей планеты разрушается

Наука и жизнь
Персона Персона

Юрий Кузнецов — о любви к уральским изумрудам и стилю ар-деко

RR Люкс.Личности.Бизнес.
Песнь льда и пломбира Песнь льда и пломбира

Лиза Туктамышева – просто красивая девушка, которая любит мороженое!

Maxim
Почему в жару отекают ноги и как снять отек Почему в жару отекают ноги и как снять отек

В чем причины отеков лодыжек и стоп в жару

РБК
Звезды над дюнами Звезды над дюнами

Путешествие к секретам Аравийской пустыни

Вокруг света
Больше не колется: 5 способов сделать льняную одежду мягче Больше не колется: 5 способов сделать льняную одежду мягче

Как сделать льняные вещи мягче и избавиться от неприятных ощущений

ТехИнсайдер
Крылья для людей Крылья для людей

История парусных кораблей

Вокруг света
Не работает тачпад на ноутбуке: причины и способы решения проблемы Не работает тачпад на ноутбуке: причины и способы решения проблемы

Что делать, если перестал работать тачпад на ноутбуке с Windows

CHIP
Во II тысячелетии до нашей эры британское олово попало на Ближний Восток Во II тысячелетии до нашей эры британское олово попало на Ближний Восток

Во II тысячелетии до н. э олово поступало из Британии на Ближний Восток

N+1
Почему не стоит оставлять открытыми алюминиевые банки в холодильнике Почему не стоит оставлять открытыми алюминиевые банки в холодильнике

Безопасно ли есть из железных банок, которые были оставлены открытыми?

ТехИнсайдер
Полет фантазии: произведения Рихарда Вагнера в пяти фильмах Полет фантазии: произведения Рихарда Вагнера в пяти фильмах

Пять известных фильмов, в которых звучат сочинения немецкого композитора Вагнера

Правила жизни
Художницы с рюкзаками Художницы с рюкзаками

Как в поездках рождаются иллюстрации к детским книгам

Новый очаг
Еще раз про банальность зла: в Каннах показали фильм Серебренникова о докторе Менгеле Еще раз про банальность зла: в Каннах показали фильм Серебренникова о докторе Менгеле

Что Серебренников хотел сказать зрителю в красивом фильме о докторе Менгеле?

Forbes
Нет 100% гарантии. Дешевле и безопаснее купить авто у дилера или перекупа Нет 100% гарантии. Дешевле и безопаснее купить авто у дилера или перекупа

У кого выгоднее приобрести подержанную машину: у дилера или частного продавца?

РБК
Прокатят по деньгам Прокатят по деньгам

Как развивается и от чего зависит цена на сталь в России

Ведомости
Поэты-ифлийцы на фронтах Великой Отечественной Поэты-ифлийцы на фронтах Великой Отечественной

Вступить в «кружок поэтов ИФЛИ» было никак не легче, чем в Союз писателей СССР

Знание – сила
Битва куликова Битва куликова

…Бойцовые собаки, бойцовые петухи, бойцовые кулики. Вы знаете о последних?

Наука и жизнь
Исторические сведения о сказочных берендеях Исторические сведения о сказочных берендеях

Легендами о лесном царстве берендеев вдохновлялись и Жуковский, и Островский

Знание – сила
Бактерии совершают самоубийство, чтобы спасти свою колонию от вирусов Бактерии совершают самоубийство, чтобы спасти свою колонию от вирусов

Кишечная палочка использует ранее неизвестную противовирусную систему

ТехИнсайдер
Можно ли убежать от старости? Можно ли убежать от старости?

Можно ли избежать старения с помощью спорта?

Здоровье
Морские спасатели, фантазийный сад и юная натуралистка: 5 комиксов и графических романов, которые понравятся всем Морские спасатели, фантазийный сад и юная натуралистка: 5 комиксов и графических романов, которые понравятся всем

5 комиксов о природе, смыслах и самопознании

Правила жизни
Нам это НАДо? Нам это НАДо?

Инновационный подход к антивозрастному уходу за кожей: косметика с NAD+

Лиза
Спокоен как самурай: как японская философия помогает выжить в трудные времена Спокоен как самурай: как японская философия помогает выжить в трудные времена

Что помогает японцам принимать неопределенность?

Forbes
Как организм слонов смог победить рак, и может ли человек достичь этого Как организм слонов смог победить рак, и может ли человек достичь этого

Генетическая загадка слонов: почему эти гиганты почти не болеют онкологией?

ТехИнсайдер
Открыть в приложении